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Abstract

We describe a kind of transformation invariance in the Quantitative Combinatorial
Nullstellensatz. This transformation invariance is frequently used to prove list coloring
theorems. We describe its usage in a new short proof of Balandraud and Girard’s Theorem
about zero-sum subsums. We also use the transformation invariance to study nowhere-
zero points of non-singular matrices A ∈ Fn×n, which are points x ∈ Fn such that neither
x nor Ax have zero entries. Utilizing the non-singularity of A in an elegant way, we give
a new proof of Alon and Tarsi’s Theorem about the existence of nowhere-zero points over
fields F that are not prime. Afterwards, with other methods, we extend the scope of Alon,
Tarsi and Jaeger’s Conjecture from fields to rings. Partially proving this extension, we
show that over rings that are not fields, every invertible matrix has a nowhere-zero point.
Moreover, over the integers modulo m, non-vanishing determinant suffices to guarantee
nowhere-zero points, as we prove for all m that are not a prime power. Finally, we show
that the four color problem can be stated as an existence problem for nowhere-zero points
over the field with three elements.

Keywords : Combinatorial Nullstellensatz, Balandraud and Girard’s Theorem, Jaeger’s Con-
jecture, Alon and Tarsi’s Theorem, Nowhere Zero Point, Four Color Theorem.

1 Introduction
In this paper [11], we do not study list coloring problems. But, to the best of our knowledge,
transformation invariance in the Combinatorial Nullstellensatz was first used in that field. List
colorings of graphs are proper vertex (or edge) colorings where the available colors on each
vertex v (or edge e) are given by an individual list Lv (or Le) of allowed colors. Proving the
existence of such colorings can be very difficult, if it has to be proven for all possible lists of
colors of given cardinalities. In this regard, the Combinatorial Nullstellensatz can be a helpful
tool, because it is possible to choose a polynomial P ∈ F[X1, X2, . . . , Xn] such that each non-
zero of P is a proper coloring of the graph, and because the Combinatorial Nullstellensatz
guarantees the existence of a non-zero x = (x1, . . . , xn) of P with x1 ∈ I1, . . . , xn ∈ In, for
all possible lists I1, I2, . . . , In ⊆ F of given cardinalities (see Theorem 1 and Implication (2)).
Numerous authors use and explain this idea, see e.g. [4],[10],[14, p. 22],[9, Lemma 1.9]. In
these works, however, what we call transformation invariance is not explicitly stated. It is not
stated in a theorem that one can draw conclusions from the non-zeros of a polynomial P on one
domain Ĩ1 × Ĩ2 ×· · ·× Ĩn to the non-zeros on another domain I1 ×I2 ×· · ·×In. Transformation
invariance is implicitly used in some of these papers. For example, in the paper [13] about the
list chromatic index of K8 and K10, Landon Rabern implicitly used transformation invariance.
In comparison to that, the list chromatic index of K6 was calculated without considering that
aspect of the Combinatorial Nullstellensatz in [8] by David Cariolaro et al. It seems that using



transformation invariance is of advantage when it comes to algorithmic calculations in this
kind of problem. But, transformation invariance can also be important in more theoretical
approaches, like in the latest attempt to prove the List Edge Coloring Conjecture for complete
graphs, in [15]. Transformation invariance, however, was not explicitly stated there either, not
in one ready-to-use theorem. We think that stating transformation invariance explicitly might
clarify the approach, and that this aspect of the Combinatorial Nullstellensatz is important
enough to be explicitly stated in a corollary to the Nullstellensatz. We did that the first
time in [16], in connection with list colorings. In this paper, we explain the usage of the
described transformation invariance in two other fields, zero-sum subsums and nowhere-zero
points. Beyond that, leaving transformation invariance behind, we further extend the theory
of nowhere-zero points to rings and the field F3:

In Section 3, we study (over the integers modulo a prime p) a problem about zero-sum
subsums of given sums

∑n
j=1 aj . These zero-sum subsums may be regarded as the 0–1 solutions

in Z/pZ of the equation
a1x1 + a2x2 + · · · + anxn = 0 . (1)

The general topic of zero-sum subsums is a broad and well established research field in additive
combinatorics and combinatorial algebra. Usually, the main focus is the existence of (non-
trivial) zero-sum subsums under different presumptions. In [5], however, Balandraud and
Girard asked whether Equation (1) is characterized by its 0–1 solutions, i.e. by the set of all
(x1, x2, . . . , xn) ∈ {0, 1}n with a1x1 + · · · + anxn = 0. They found that if n > p and all
coefficients aj are non-zero, then the coefficients aj are uniquely determined, up to a constant
factor. In other words, in that case, the hyperplane with defining equation a1x1 + · · · +
anxn = 0 possesses a basis made of 0–1 vectors. This is the Balandraud-Girard Theorem, for
which we give a new short proof based on transformation invariance. Other corollaries of the
Combinatorial Nullstellensatz, such as the Permanent Lemma [1, Lemma 8.1], can also be used,
instead of transformation invariance. Some experts might already be aware of such a short
proof, but we are not aware of any published version. The original treatment in [5], whilst also
using the Combinatorial Nullstellensatz, is much more complicated. The aim there is to also
classify the exceptions to the theorem in the cases n = p and n = p − 1.

In Section 4, another interesting question about hyperplanes and bases is examined. It was
raised by Jaeger in the form of the following conjecture (originally stated for q = 5 only):

Conjecture 1 (Jaeger’s Conjecture [12])
To every two bases B1 and B2 of an n-dimensional vector space, over the finite field Fq with
q > 3 elements, there exists a hyperplane H that is disjoint from B1 and B2.

Alon and Tarsi formulated this conjecture as follows, where a vector x ∈ Fn
q is called a

nowhere-zero point of a matrix A ∈ Fm×n
q if neither x nor Ax have a zero entry:

Conjecture 2 (Alon and Tarsi’s Reformulation [2])
Every non-singular n×n matrix A, over the finite field Fq with q > 3 elements, has a nowhere-
zero point x ∈ Fn

q .

This conjecture is trivial if q − 1 > n (as well as over infinite fields). In fact, if the first j
coordinates of Ax are already non-zero, one can alter xj+1 till the first j + 1 components of Ax
differ from zero. Here, one only needs that, after suitable row permutations, the elements on
the main diagonal of A are all non-zero. Further partial results, in the case where q is relatively
big compared to n, can be found in [3]. Using the Combinatorial Nullstellensatz, however, the
conjecture can completely be proven for certain q, with no restriction on n. Alon and Tarsi
showed in [2] that the conjecture holds for all proper prime powers q (which means that it holds
over every non-prime field). Other proofs of this result can be found in [6] and [7]. Utilizing
the assumed non-singularity in a new elegant way based on transformation invariance, we give
yet another proof.



In Section 5, we extend the scope of Alon, Tarsi, and Jaeger’s Conjecture from fields to
rings. We show that over rings that are not fields, every invertible matrix A has a nowhere-
zero point. This also holds over non-commutative rings. Over commutative rings, however,
it can be strengthened. There, the invertibility of A is equivalent to the invertibility of the
determinant det(A), and one may wonder if the weaker presumption det(A) ̸= 0 is enough,
over commutative rings. We make the following conjecture:

Conjecture 3 Over commutative rings R with more than 3 elements, every n × n matrix A
with det(A) ̸= 0 has a nowhere-zero point.

We prove this conjecture for rings with no minimal ideal or more than one minimal ideal. In
particular, we show that it holds true over the ring Z/mZ, whenever m is not a prime power.

Finally, in Section 6 and Theorem 2, we turn to nowhere-zero points over the field F3 with
three elements, and show that the four color problem can be stated as a nowhere-zero point
problem over F3. Of course, there are non-singular matrices over F3 without nowhere-zero
points, but if one could classify those exceptions, it would possible help with the four color
problem.

2 References: figures, equations and theorems
Theorem 1 (Quantitative Combinatorial Nullstellensatz [14])
Let I1, I2, . . . , In be finite non-empty subsets of a field F, set I := I1 × I2 × · · · × In and define
d := (d1, d2, . . . , dn) by dj := |Ij | − 1. For polynomials P =

∑
δ∈Nn PδXδ ∈ F[X1, . . . , Xn] of

total degree deg(P ) ≤ d1 + d2 + · · · + dn, we have

Pd =
∑
x∈I

NI(x)−1P (x) ,

where NI(x1, . . . , xn) :=
∏

j

∏
ξ∈Ij\{xj}(xj − ξ) ̸= 0.

This theorem implies Alon’s classical Combinatorial Nullstellensatz [1], i.e. the implication

Pd ̸= 0 =⇒ ∃x ∈ I : P (x) ̸= 0 , (2)

because a sum can only be non-zero if at least one summand is non-zero. This and several
other interesting corollaries of the coefficient formula can be found in [14], as well. Somewhat
newer is the following transformation invariance, which follows by applying the theorem twice
and considering the coefficient Pd as an intermediate step:

Corollary 1 (Transformation Invariance [16]) For j = 1, 2, . . . , n, let Ij and Ĩj be finite
non-empty subsets of a field F with |Ij | = |Ĩj |. Let NI and NĨ be the corresponding coefficient
functions over the cartesian products I and Ĩ of these sets. Assume that P, P̃ ∈ F[X1, . . . , Xn]
are polynomials of total degree at most |I1| + |I2| + · · · + |In| − n. If P̃ and P have the same
homogenous component of maximal degree, or if at least P̃d = Pd, then∑

x∈Ĩ

NĨ(x)−1P̃ (x) =
∑
x∈I

NI(x)−1P (x)

and, in particular, ∑
x∈Ĩ

NĨ(x)−1P̃ (x) ̸= 0 =⇒ ∃x ∈ I : P (x) ̸= 0 .

Theorem 2 The four color theorem is equivalent to the existence of nowhere-zero points of
all matrices A that can be obtained in the described way, from two planar binary trees that are
glued together, as in Fig. 1, to form a 3-regular planar graph.



FIG. 1: A 3-regular
planar graph with
Hamiltonian cycle
in its dual graph
(dotted line)
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